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Abstract—Physarum Polycephalum is a very special type of
slime mold that has complex behaviors for when foraging for
nutrients and building transport networks. This paper examines
the network properties that come from a computer simulation
of Physarum based on the work of Jones [1]. We examine
how rapidly the slime finds food sources, the qualities of the
network structures and node degree distributions that form, and
the sensitivity of the simulation to small variations in initial
conditions. Our key findings are: the slime quickly localizes all
food sources and builds connected networks spanning them, node
degree distributions do not follow a power law, and the networks
exhibit high sensitivity to slight changes in initial conditions,
a common feature of complex adaptive systems. We analyze
how different simulation parameters like particle sensor angle
and rotation angle impact the resulting networks. Overall, the
Physarum simulation shows the ability of basic local rules to
generate dynamic, adaptive networking behavior, with potential
applications to decentralized computing and routing solutions.

I. INTRODUCTION

In this project, we use a Physarum Polycephalum model
developed by user Fogleman on GitHub [2]. The algorithm
derived from Fogleman is highly resemblant of the one pre-
sented by Jones [1]. Similarly, it is a multi-agent model that
operates on two ”overlapping” grid maps, the data map and
the trail map. The ’top’ data map is the environment where
the many slime agents reside, whereas the ’bottom’ trail map
contains the information which influences the movement of
the slime particles. This information consists of ’temperature’
values dictating where slime trails and food exist on the grid.

Physarum particles scan this map using a cone-shaped
sensor whose vertex points to the center of the particle and
whose base points in the direction the particle was previously
moving. The sensor helps guide particles by analyzing the
different trail grid map temperature values contained within it
and shifting the particle a certain number of grid cells towards
the highest temperature value scanned as long as the new grid
cell is not occupied by another particle. Once a particle makes
a step, it increases the temperature within its newly occupied
cell. After each iteration in the simulation (all slime particles
have made a step), each trail map cell diffuses (blurs) by
spreading out some of its temperatures to neighboring cells.

The behavior and overall nature of the simulation are reliant
on its configuration which consists of variables: simulation
width, simulation height, number of particles, blur radius,

blur passes, zoom factor, particle sensor angle, particle sensor
distance, particle rotation angle, particle step distance, particle
deposition amount, and the simulation decay factor. Defini-
tions of what what each configuration variable entails is as
follows:

• Simulation width & height: size dimensions of the sim-
ulation environment.

• Number of Particles: Number of particles established in
the simulation.

• Blur Radius: How much temperature of a cell disperses.
• Blur Passes: Number of times a blur pass is performed
• Zoom Factor: How zoomed in the simulation is
• Sensor Angle: Angle between the far left or far right of

the sensor from the forward position.
• Sensor Distance: Size of the region in front of the particle

that the sensor can see.
• Rotation Angle: Angle at which the particle is able to

rotate.
• Step Distance: How far a particle is allowed to move.
• Deposition Amount: Temperature deposited by a particle.
• Decay Factor: Rate at which temperature diffuses/decays.
The similar simulation used by Jones [2] posed some in-

teresting findings. By modifying the configuration parameters,
Jones demonstrates how the simple local interactions, specif-
ically chemotaxis, can lead to the formation of complex and
dynamic transport networks, observable in the real Physarum
Polycephalum. Furthermore, behaviors such as network forma-
tion, contraction, bifurcation, and repair were all highlighted
by the study. These findings help suggest that these biological
patterns can inform the development of new computation
strategies.

Influenced by Jones’ findings, in this study, we seek to
further understand the network behaviors exhibited by the sim-
ulation, the time it takes to create a network, the distribution
of node degrees throughout the network, and the impact of
initial conditions on the network.

II. METHODOLOGY

We explored the networks that occurred from a variant of
the Physarum slime algorithm presented in the Jones paper
[1]. We started our exploration by building off the code by
Michael Fogleman [2]. This implementation did not include



Fig. 1. Example of how viewing images in logarithmic scale can reveal
hidden attributes. This technique applies a log function to the magnitudes of
the pixels.

the collisions discussed in the Jones paper but still produced
similar results to the paper in initial testing. One important
test was changing the parameters to produce chaotic, labyrinth,
island, or mesh results, and the code produced results predicted
by Jones when we used similar settings.

Unfortunately, the Foglemen implementation contained no
way to place food particles in the simulation. Therefore,
we had to fork the repository and implement this ability,
which can be found in a Github repository here [3]. To
implement food particles, we allow the user to input an image
of where they would like food particles to be. Then, the code
will continuously deposit food on the trail/heat map every
simulation iteration, which encourages the slime to go to these
locations.

To perform the tests we wanted to, we had to implement
some additional functionality to the code from Fogleman. Food
locations were added, which increases the temperature by a
large amount in any location they are placed. The food can
also be controlled throughout the simulation to see how the
slime reacts to changing food locations.

We also have three ways to contain the slime. First is
the default as implemented by the original code, which just
connects the top and bottom together and the same for the
sides. There is also a method used that forces the slime to
redirect back into the center when it gets too far out, requiring
the slime to remain in a location of interest. Finally, we could
put a less powerful food source in some shape on the board.
Since the slime will be attracted to food more than the outside,
it will not leave that shape, but will still be attracted to stronger
food sources and other slime paths.

Most analysis is done by examining the images or videos
produced by the simulations. One important technique for
examining the images is looking at them in logarithmic scale
as demonstrated in figure 1.

We also used a standard set of base conditions that we com-
pared everything against. These conditions were developed
based on the standard settings used in the Jones paper, with
some alterations that produced better results for our specific
simulation. These can be seen in table III. The following
section (Findings) will explain the specific ways we explored
how networks were built along with the attributes of those

Config Setting Our Base Config Jones’ Config
simulation width: 512 200
simulation height: 512 200

numParticles: 217 1200-6000
blurRadius: 1 3
blurPasses: 2 N/A

zoomFactor: 1 N/A
SensorAngle: 45◦ 45◦ or 22.5◦

SensorDistance: 8 9
RotationAngle: 45◦ 45◦

StepDistance: 1 1
DepositionAmount: 2 5

DecayFactor: 0.05 0.1
TABLE I

”OUR BASE CONFIG” IS THE SET OF PARAMETERS WE USED AS OUR
BASELINE WHEN DOING TESTS. IT IS BASED ON ”JONES’ CONFIG” WHICH

IS THE SET OF STANDARD CONFIGURATIONS USED IN THE JONES PAPER
[1].

networks.

III. FINDINGS

The work in [1] lays the groundwork for the exploration
of what types of networks the Physarum simulation produces
and what factors affect the network. Understanding the ways
different configurations affect the development of networks
can assist later researchers in developing successful algorithms
using slime simulations to solve problems.

A. How the Slime Finds Food

Two parameters affect how the slime detects the food points:
the sensor angle and sensor offset. We generally set these
parameters to 45◦ and 8 pixels respectively. Figure 2 shows
how the sensor offset affects the slime’s ability to see the food.
While the slime does not specifically recognize the food as a
separate object, the food produces enough temperature that the
slime will almost always be attracted to food when one of its
sensors sees it.

Figure 3 shows the way changing food sizes affect how the
slime finds the food. When the food is large (image D), and
hence the area that slime particles can be in to find the food is
large, the slimes find the food and create structure around it.
In the same number of time steps when the food is very small
(image A), the slime has not found all the food particles. This
matches what we would expect, as it is just a smaller chance
for the slime to ever stumble upon the food in its exploration.

Understanding how the slime reacts to the food is important
if we want to use the slime to connect points for us. If
two separate points are close enough together, we want to
understand how small we can make the food sources around
them. If the algorithm requires the food sources to be larger
than the points are separated, the slime might end up just
resolving the two points as one larger point and not act like
we want.

B. Speed Considerations

For an algorithm to be useful we need it to be able to run at
reasonable speeds. We believed that this slime simulation had
the chance to be good at solving problems since it is similar



Fig. 2. (A) Slime particles look in three directions for the location with the
highest temperature. It specifically looks at the pixels a predefined distance
away, called the sensor distance or sensor offset, to determine where to move.
(B) This means there is a ring around the center of the food where there is a
chance the slime particle will find the food (in green). This example shows
a food radius smaller than the radius of the sensor distance, but this is not
required. The width of the ring is related to the radius of the food and the
radius of the ring is related to the sensor distance.

Fig. 3. Changing the size of the food without changing the particle settings
produces different results. (A) The food has a 2-pixel radius and the slime
did not find all the food locations. (B, C) The food has 4-pixel and 6-pixel
radiuses respectively and the slime found all the food particles, but it has not
settled into a clean pattern. (D) The food has a 10-pixel radius and has settled
into a clear pattern with the shortest paths between each food particle. All
simulations were run for the same number of time steps and are displayed
where the intensity is log-scaled. The configurations are the same as in table
III.

to a parallel terraced scan. While it does not have a clear goal,
it is many separate particles that do come to an ”agreement”
on where to move. In general, the slimes find the shortest
path between nearby food particles and create extra nodes
around and inside the circle of particles shown on the left
in figure 8. The slime is also a time-developing algorithm so
there are interesting characteristics that come into play when
the surroundings change.

The number of time steps it took for the slimes to find all the
food particles is shown in figure 8. We tested it both with and
without the border. It took longer to find all the food without
the border, where slimes could travel the whole screen and
loop back around. This follows expectations since the border
is essentially just decreasing the amount of space needed to
search.

Two attractive attributes of this algorithm are that it is
adaptive and continuous. When testing how the slime adapts to
changing food locations over the course of a single simulation,
we found two interesting attributes of the networks built. The
first was that even when food sources were deleted, there
structure that was around those nodes often persisted for a
while. Figure 5 demonstrates an example of this where the
structure that was built around a deleted food source persists
well after 1000 time steps. This could come from the fact that
there is not a mechanism employed to specifically tighten the
network. A method for removing strands like this is presented
in [1], but it involves weighting slime residue more than food
nodes after a certain amount of time, and this was not part of
our implementation. The other useful observation was that the
slime does not take very long to incorporate new nodes into
the network, as shown in figure 6. The chaotic nature of the
slimes seems to play to its advantage since it creates smaller
strands in locations that don’t have a food node but might get
one in a changing environment.

Although the slimes are quick to adapt to important changes,
our simulations still ran much longer than it would take to just
point out by hand the solutions the slimes came up with. The
real value of this algorithm will have to be determined by large
simulations with thousands of food nodes. We also would like
to point out that we used 217 particles in comparison to the
1200-6000 particles that were used by the Jones paper. We
used more particles to produce better images and have not
properly experimented with how few particles are required
to produce results, which is important to know if speed is a
concern.

C. Nature of Node Connections

As mentioned in part A, the sensor angle and sensor offset
affect the way the slime finds food. However, we also wanted
to investigate how node connections were established and if
the slime exhibited any sort of power law distribution. To see
the impact of configuration sets on this behavior; sensor angle,
sensor distance, and rotation angle were individually increased
or decreased within our base configuration. To measure how
each configuration parameter affected the slime, each was
changed one at a time, 6000 iterations were conducted, and



Fig. 4. (LEFT) A food map that distributes 9-pixel radius food blobs around a circle. The Light gray circle is a border that keeps the slime particles inside it
by weighting movements to the outside very low. (RIGHT) The speed at which the slime found all the food particles. We defined this as a large number of
slimes congregated around the food particle. It does not imply that there was an efficient network involved. The orange plot has error bars where the error is
the standard deviation from multiple runs. Blue is the same configuration but without the light gray border circle.

Fig. 5. When a food node is removed, there is a persistent structure from
where it started.

Fig. 6. New food nodes tend to be found quickly as there are slimes all over
the board and they tend to get found and incorporated.

each node in the final state of the algorithm was analyzed.
Furthermore, two different food node layouts were used:
twelve nodes forming the perimeter of a circle and twelve
nodes randomly spread out amongst the grid.

In the simulations, regardless of the configuration parame-
ters, there was a tendency for the development of ’intermediate
nodes’ within the slime. These nodes were characterized by
impactful connections between food node edges which allowed
for the attraction of more or the creation of new edges. The
degrees of these nodes were also recorded. However, it’s
important to note, that for a connection to increase a node’s

Node Degrees 0 1 2 3 4 5 6
Base Config: 0 0 7 8 1 0 0

SensorAngle Increased: 4 0 6 4 1 0 0
SensorAngle Decreased: 0 0 5 19 5 1 0

RotationAngle Increased: 0 0 10 8 1 0 0
RotationAngle Decreased: 0 0 8 9 0 0 0
SensorDistance Increased: 0 0 2 24 14 0 0

SensorDistance Decreased: 1 0 8 4 0 0 0
TABLE II

SHOWS THE DATA REGARDING THE CIRCULAR FOOD NODE LAYOUT.
DEPICTS THE NUMBER OF NODES (FOOD & INTERMEDIATE) FOR EACH

DEGREE PRESENT IN THE FINAL SIMULATION STEP OF A SIMULATION RAN
WITH THE LEFT CONFIGURATION MODIFICATIONS ON THE.

degree in the data, it had to be of noticeable strength/tem-
perature in the image and show considerable impact on the
behavior of the network (connection over distance or point
for multiple connections).

Tables II and III below show the node counts for varying
degrees regarding each parameter change and food node
layout. Graphing these values reveals some interesting network
properties of the slime mold. In general, it was common for

most nodes to be of degree 2 or 3 with lower values for all
other degrees. Depending on which configuration parameter
was changed, the likelihood of the emergence of new nodes
dramatically changed. Typically, increasing the rotation angle,
increasing the sensor distance, or decreasing the sensor angle
resulted in a large increase in the likelihood of new nodes and
connections emerging regardless of the food node placements.
On the other hand, decreasing the sensor angle or sensor
distance resulted in lower node degree counts and more defined
node connections.

Graphing the table values lets us see how spread out the
node degree counts for each simulation are. For the sake of



Fig. 7. Depicts the network established after 6000 iterations by 8 different simulations using different configuration sets. Letters A, B, C, and D depict the
networks created using our base configuration, increasing the sensor angle, increasing the rotation angle, and increasing the sensor distance respectively; on a
grid with a circular food node layout. Letters E, F, G, and H depict the networks created using our base configuration, increasing the sensor angle, increasing
the rotation angle, and decreasing the sensor distance respectively; on a grid with a random food node layout.

Node Degrees 0 1 2 3 4 5 6
Base Config: 0 1 6 6 2 1 0

SensorAngle Increased: 0 1 10 3 1 0 0
SensorAngle Decreased: 0 0 5 16 5 0 0

RotationAngle Increased: 0 0 3 15 4 0 0
RotationAngle Decreased: 3 0 6 3 1 0 0
SensorDistance Increased: 0 0 3 17 3 0 0

SensorDistance Decreased: 4 0 6 4 0 0 0
TABLE III

SHOWS THE DATA REGARDING THE RANDOM FOOD NODE LAYOUT.
DEPICTS THE NUMBER OF NODES (FOOD & INTERMEDIATE) FOR EACH

DEGREE PRESENT IN THE FINAL SIMULATION STEP OF A SIMULATION RAN
WITH THE LEFT CONFIGURATION MODIFICATIONS ON THE.

saving space, figure 8 below only shows 8 of these graphs,
but they are well representative of the different ’bell’ shaped
spreads seen in the data. The respective slime network for each
graph can also be seen in figure 7. Analyzing these figures
quickly draws us to the realization that the slime network
doesn’t exhibit a power-law distribution or preferential attach-
ment. It’s clear to see from the graphs how lower and higher
node degrees were less present within the networks than the
middle node degrees.

The lack of a power-law distribution and preferential at-
tachment can be attributed to the way the slime particles
work. Since a slime particle can only scan a certain region
in front of it, it has the possibility of completely missing a
node next to it which might already be of a higher degree. As
network connections become more established and stronger
in temperature, this effect snowballs and can lead to a lower

likelihood of high-degree nodes increasing in degree even
more as they might be outshined by greater temperature
connections. Even in simulations where a configuration set
allows particles to see more around them, this behavior is still
present at some level. This is clearly seen in our tests where the
sensor angle was increased. Ironically, decreasing the sensor
angle resulted in particles being attracted to more nodes which
led to the creation of even more intermediate nodes.

Regarding the development of each network before achiev-
ing its final state, there’s some interesting behavior that must
be noted. At some point, regardless of the configuration, each
simulation had a step where all nodes were incorporated
into the network. Even in the less chaotic simulations, the
slime contained a path that connected all nodes. Also, as the
simulation progressed, intermediate nodes were created and
extinguished. There was no such thing as a ’stationary’ inter-
mediate node or an intermediate node that existed throughout
the entire simulation. Intermediate nodes were frequently
shifting location until either slime particles were pulled away
from it or merged with another node. Most intermediate nodes
were short-lived but still had an impact on how the network
achieved its shape in the final iteration.

D. Sensitive Dependence On Initial Conditions

For our final point of research, we chose to examine the
sensitivity of the slime mold simulation on the initial condi-
tions. From the previous experiments, we knew that changing
the initial conditions could lead to drastically different final
outcomes after the simulation had evolved. However, all the



Fig. 8. Graphs depicting the node degree distribution for their respective configuration set. These distributions are the typical shapes found in our simulations,
all of which provide support against the existence of a power-law distribution or preferential attachment. The letter at the top left of each graph can be used
to view its respective network in figure 7.



Fig. 9. This is a graph of iteration count vs the image similarity ssim metric
compared to the base parameter set. Each time series shows a different edited
parameter set.

previous experiments varied the initial conditions by a large
amount.

Often, in simulations for complex adaptive systems, chang-
ing the initial conditions even slightly can lead to a great di-
vergence in the two simulations as time moves on. This effect
is clearly illustrated in Melanie Mitchell’s book Complexity A
Guided Tour. In chapter two, Mitchell introduces the logistic
map, which is a model for population growth that is known
to behave like a complex adaptive system. She shows that
if you run two simulations of the logistic map, with the x0

initial population values different by a value of 10−10, the two
simulations will have completely diverged after 30 iterations
[4].

To test if the slime mold simulation had the same sensitivity
on initial conditions as the logistic map, we started by running
seven different simulations for 5000 iterations and recording a
photo every 25 iterations. Of the seven simulations, 1 was the
base parameter set, while in the other six, we either increased
or decreased the following parameters by 10−3: rotation angle,
sensor angle, and sensor distance. For each of these 6 modified
simulations, we took each picture and compared it to the
corresponding picture from the base parameter set. To do this,
we computed the structural similarity index between the two
photos, using a function for Scikit-Image [5]. The results of
this experiment can be seen in figure 9.

From figure 9, it’s clear that the slime simulation has
extreme sensitivity on initial conditions the same way that
the logistic map does. For all the parameter sets, the image
similarity between the base set rapidly drops for the first 1000
iterations. After these first 1000 iterations, the image similarity
stays relatively the same for all the parameter sets, wavering
between 0.850 and 0.800.

After this experiment, we were curious if the amount of
the difference between the initial conditions caused faster
divergence. To test this, we chose to vary only one parameter

Fig. 10. This is a graph of iteration count vs the image similarity ssim metric
compared to the base parameter set. Instead of varying different parameters
in this graph, we only changed sensor distance.

between the base set by different amounts. We chose to vary
the sensor distance amount, which is 8 in the default set.
We chose the values 7.9,7.99,7.999,7.9999, and 7.99999. The
results for this experiment can be seen in figure 10.

By observing 10, we can see that changing the amount of
difference between the initial seems to have no effect on the
speed of divergence between the different simulations. If this
were true, then the purple curve which represents the smallest
difference in initial conditions, would diverge between the base
set the slowest. However, the orange curve, which represents
a larger initial difference seems to diverge slower than the
purple curve. This shows that no matter how they are edited,
the slime simulation has a chaotic and rapid divergence when
initial conditions are changed.

IV. SUMMARY/NEXT STEPS

The original Jones [1] does a fantastic job of formalizing the
idea of a Physarum slime simulation in code. On top of that,
they use the simulation that they build to exhibit the complex
and dynamic behaviors of the slime.

In this paper, we hoped to use the Jones paper as a jumping
off point. With the simulation implementation from Fogleman
[3], we investigated three separate but related aspects of the
slime simulation:

1) The rate at which the slime finds food
2) The different network qualities resulting from varying

simulation parameters
3) Simulation sensitivity on slightly different initial condi-

tions
We found that the slime simulation will rapidly find the

food sources, and then build a very optimal network con-
necting all the nodes together. Even when food sources are
deleted/changed throughout the simulation, the slime will
dynamically respond to these changes gracefully. We also
found that varying the initial parameters of the network can



lead to very different final networks, some with different
node densities and average node-degree. Finally, we found
that the networks are extremely sensitive to changes in initial
conditions, which is in line with the way that real complex
adaptive systems progress in the real world.

There are many different directions for the next steps
regarding slime simulation research. Firstly, developing a
methodology to quantify network properties through code
rather than in observation would provide future researchers
with more reliable and a higher quantity of data to work
with. Next, using statistical analysis techniques could give
deeper insights into the significance of observed patterns and
behaviors. These might include methods like cluster analysis
and regression modeling. This report only tested the slime
molds on a relatively small number of food nodes. Further
work into the scalability is important to know the limitations
of this type of algorithm.
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