
Insights into Viral Evolution Dynamics: Mapping
Mutations and Understanding the Emergence of the

Omicron Variant in COVID-19
1st Tristan Larkin

University of New Mexico, Department of Computer Science
Albuquerque, United States of America

trlarkin@unm.edu

2nd Jack Wickstrom
University of New Mexico, Department of Computer Science

Albuquerque, United States of America
jwickstrom@unm.edu

Abstract—The COVID-19 virus pandemic has permanently
altered the understanding of viral biology, particularly with
regard to mutation mapping and and related techniques. This
paper explores a number of methods to map viral mutations
and analyze their implications. We begin with an examination of
the antigenic properties of the SARS-CoV-2 virus, by performing
mutation calculations to understand the genetic diversity and
antigenic/functional consequences of mutations. Next, we con-
struct a neutral network to visualize the genetic neighborhood of
the virus and investigate its implications for viral evolution and
robustness. Additionally, we create an antigenic map generated
from mutation data converted into titer data. This provides
insights into the antigenic relationships between different vi-
ral strains. Finally, we investigate the strange circumstances
surrounding the emergence of the Omicron variant and assess
possible scenarios for its origin using scientific literature and
analysis from an argument based on neutral networks. We
find that the development of the Omicron variant in the same
population as the Delta variant is very unlikely.

I. INTRODUCTION

COVID-19 caused a lot of changes to the way people do
things, and something it changed is how biologists understand
viruses. Thanks to the large amount of data collected on the
Sars-Cov2 virus, we have been able to learn a lot about viruses.
This paper will discuss a few ways we can map viral mutations
and quantify their effect on the virus.

There are billions of virions inside the body during an
infection, and many of them are replicating, with a chance
of mutation. While most mutations have negative effects on
the virus [1], the ability to mutate is what makes viruses like
SARS-CoV-2 so dangerous, as they can continue to evolve
to fight our attempts to kill it off. We are going to strictly
consider mutations where one amino acid is swapped with
another amino acid due to a single nucleotide change in the
genetic code during replication. There are many nucleotide
mutations that do not change how the proteins form, which is a
form of robustness. However, even if the protein changes many
mutations are essentially neutral, and do not meaningfully
change the fitness of the virus.

Understanding how SARS-CoV-2 mutates to become a more
fit virus can help us learn how to predict its evolution. Com-
puter scientists have also based many computational models

on biological systems, and this could be a path to developing
new computational methods or analysis techniques.

II. MUTATION CALCULATIONS

Question 1

How many different genomes are 1 nucleotide mutation
away from the RBD of the original strain?

The RBD has 194 amino acids, and since each amino acid
is encoded by 3 nucleotides, it has 194 ∗ 3 = 582 nucleotides.
Since there are 4 possible nucleotides, each nucleotide can
mutate into 3 different variations. This means there are 582 ∗
3 = 1746 different genomes 1 nucleotide away.
a. What fraction of those mutations are silent? First, we

took the original string of 582 nucleotides and generated
all the 1746 mutations. Then, for each of these mutations,
we converted them into the corresponding string of amino
acids. If this string matched the string of original amino
acids in the RBD, then the mutation was counted as silent.
This resulted in 384, or 22.0% silent mutations.

b. What fraction of those mutations are antigeni-
cally neutral? To answer this question, we used Jesse
Bloom’s COVID antibody escape calculator [2]. This
calculator contains a helpful Python module named
escapecalculator.py.
This module allows users to input a list of amino acids
edited in RBD and returns the fraction of antibodies that
are still binding. If more than 99% of the antibodies were
still binding, we considered the mutation to be antigenically
neutral. This procedure resulted in 952, or 54.5% antigeni-
cally neutral mutations.

c. What fraction of those mutations are functionally neu-
tral? To answer this question, we used Jesse Bloom’s
COVID spike amino-acid fitness calculator [3]. The code
repository contains a CSV file named aa_fitness.csv.
This file contains the fitness change resulting from changing
one amino acid to another in the RBD. However, this
file isn’t exhaustive, i.e. it doesn’t contain every possible
mutation. Therefore, for each mutation, we simply took
the average fitness of mutations across that particular site.



If this average fitness change had a magnitude less than 1,
then we considered it functionally neutral. This procedure
resulted in 1066, or 61.0% functionally neutral mutations.

d. How many different genomes are 3 nucleotide mutations
away With more than 1 mutation, the problem becomes
combinatoric. The formula is

(
n
k

)
∗ 3k, with k = 3 and n =

1746. Solving this results in 882550620 mutations.

Question 2

How many different genomes are 1 amino acid mutation
away from the RBD of the original strain? The RBD has
194 amino acids, each of which can mutate to 19 different
amino acids. Therefore, the RBD has 194∗19 = 3686 different
genomes 1 amino acid mutation away.
a. What fraction of those mutations are silent? Since every

mutation involves the change of an amino acid, none of
them are silent.

b. What fraction of those mutations are antigenically
neutral? We used the same strategy as in question 1:
generate all the mutations then call them in the Python
module. This resulted in 1539, or 41.8% antigenically
neutral mutations.

c. What fraction of those mutations are functionally neu-
tral? Using the CSV file from the fitness calculator, we
found 1862 or 50.5% functionally neutral mutations.

d. How many different genomes are 3 nucleotide mutations
away We can use a similar combinatorial formula from
question 1:

(
n
k

)
∗ 19k. Note that 3k was replaced by 19k,

since there are 19 different acids to mutate to. In this
scenario, n = 194 and k = 3. This results in 8218069696
genomes that are 3 amino acid mutations away.

All the code used to compute these calculations can be
found in our repository [4], in the file part1.py.

a b c d

Q1 22.0% 54.5% 61.0% 882550620
Q2 0% 41.8% 50.5% 218069696

III. NEUTRAL NETWORK

Neutral Network Background

For viruses to increase fitness they have to evolutionarily
”search” for mutations that are beneficial to the virus. Gen-
erally, ”weakly [harmful] mutations are more abundant than
neutral mutations” [1]. There are billions of virions inside
an infected host, so a virus can spare some poor mutations
if it means that some lead toward a helpful mutation. In
the context of a virus’s genetic code, a neutral network is
a graph where the vertices are sequences of genetic code for
the virus, connected by edges representing the mutation that
takes the virus from one vertex to another. Specifically, neutral
networks are these graphs where all the edges produce little
to no phenotypic changes, and by extension do not change the
fitness of the virus (see Fig 1).

Two interesting things that neutral networks show are how
a virus can explore the space of mutations and how certain

Fig. 1. Neutral network graph based on the data in [3]. Any edge represents
a single amino acid change that affects fitness up to ±0.1 fitness. The vertices
are colored based on their relative fitness to the center starting node, where
red is worse and blue is better. As expected there are more mutations that
negatively impact the fitness than positively, 82% bad in this image. There
exist cases where both mutations are negative, but some show that while the
first mutation was poor, the second ended up bringing the overall fitness above
the starting fitness. Note that all mutations in this graph are small (hence this
entire graph is a neutral fitness network) and the length of the edge does not
have a meaning.

traits can become robust to change. As mentioned, when a
virus mutates it is generally going to become less fit and
die off before it is able to reproduce a lot, losing out to the
more fit viruses. However, it is beneficial to have an active
population that is diverse, essentially not putting all your eggs
in one basket. Neutral networks allow viruses to have a level
of diversity in their population by having many equally fit,
but genetically different, virions that can actively compete
with each other. In Fig. 1 there are many white and slightly
blue bubbles that are likely to survive together in a host each
searching for good mutations in a different space, speeding up
that search exponentially from just having a single dominant
genetic virus.

On the other end of the spectrum, neutral networks can show
how robust a virus is to change. Certain virus configurations
are less volatile and will be able to have stray mutations that do
not really change the trait. When looking at a neutral network
that only includes a subset of the genetic code that encodes a
vital part of a virus or other life form it will be expected for
most major mutations to be multiple mutations away, so as to
not risk mutating in a way that devastates the organism.

Neutral Network Creation

Since a neutral network is based on the fitness of potential
mutations, we opted to use the same CSV file from Jesse



Bloom’s fitness calculator that contains the fitness change
of various amino acid mutations along the spike protein.
Additionally, we also opted for the same threshold of neutrality
from earlier: ±1.

To create the neutral network, we started by filtering the
fitness data down to only amino acids within the spike protein,
and to those that were in our neutrality threshold. Then, we
created a root node, shown in the center of figure 1, which
represents the base unmutated virus. From this root node, we
chose 16 variants 1 mutation away that were in our neutrality
threshold, then attached them as outgoing nodes from the root
node.

Unfortunately, as far as we could tell, calculator [3] contains
no way to assess the fitness changes for a novel, mutated
virus. After 1 mutation, the numbers of fitness changes for
a subsequent amino acid mutation were no longer accurate,
since they are referring to the base unmutated virus. However,
we imagine that the difference in fitness change between two
viruses that are one amino acid apart is very small, so we
used the same fitness values from the CSV file for the second
mutation.

Given the assumption from the last paragraph, we con-
structed the next layer of mutations as follows: for each of
the 16 earlier mutations, we created another 16 mutations
within the neutrality threshold. However, these mutations were
somewhat different from the first layer, because we computed
the fitness by adding together the fitness from the first and
second mutation. We only considered the second layer muta-
tion neutral if this ”net” fitness was still below our neutrality
threshold. Just as in the first layer, we set these 16 novel
mutations as outgoing nodes from the mutation they were
created from. All the code to create the neutral network can
be found in the file part2.py from our repository, [4].

IV. ANTIGENIC MAP

After building the neutral network, we used it to generate
many different mutations and visualized these mutations using
an antigenic map. An antigenic map is a graphical repre-
sentation used in immunology and virology to visualize the
relationships between different strains or variants of a virus
based on their antigenic properties.

A. Antigenic Map Creation

To create the antigenic map, we started by generating 270
mutations using our neutral network. For each mutation, we
first perform a random walk to an outer edge on the neutral
network, giving us a neutral mutation two amino acids away
from the original. Then, from this mutation, we randomly
choose 1 two 3 more amino acids to mutate. These mutations
aren’t limited to neutral mutations, so these mutations might
have a dramatic effect on the fitness of the mutation.

This process leaves us with a mutation that is 3 to 5 amino
acids away from the original spike protein, which may or may
not be neutrally mutated. After generating these mutations, we
must process them into a titer data format that can be used to
generate an antigenic map.

Fig. 2. An antigenic map of 270 different variations of the COVID spike pro-
tein. The strains are colored circles and antisera are uncolored open squares.
”The spacing between grid lines is 1 unit of antigenic distance—corresponding
to a twofold dilution of antiserum in the HI assay. Two units correspond to
fourfold dilution, three units to eightfold dilution, and so on.” [5]

To generate the titer data, we first begin by computing the
escape amount for each mutation using Bloom’s calculator
[2]. Then, we compute antigenic distance with the formula
distance(ij) = |1 − escapei/escapej |. Then, we can use
this distance value to generate titer data with the formula:
titer(ij) = 210−distance(ij)

Once titer data has been generated, we write it to a CSV
file, then feed that file to the RACMACS tool written in R to
generate the final antigenic map [5].

The code used to generate the CSV titer data can be found
in our repo at [4] in the file part2.py. The code used to
consume this file and actually generate the antigenic map can
be found in part3.r.

B. Antigenic Map Discussion

Figure 2 shows the map resulting from the methodology
outlined in IV-A. In a typical antigenic map, one can see
different virus strains condensed into clusters throughout the



map. However, our map doesn’t appear this way. This is
because the antigenic distances between the mutations are
much smaller than typical titer data used to generate an
antigenic map.

One interesting observation of the antigenic map is that
almost all the variations seem to lie along the same line, which
shows that they are closely related.

Using the Bloom fitness calculator [3], we also calculated
the average fitness of the strains shown in this antigenic
map. The average fitness of the mutations was -3.97. This
is unsurprising since most mutations in the wild are not
advantageous. Because these mutations are on average unfit,
it is unlikely to see them in the wild. If mutations on average
improved fitness, then viruses would evolve extremely quickly,
making countermeasures against them very difficult.

V. PART 4
Despite all the data that exists on the SARS-CoV-2 variants,

especially from 2020 to 2022, there is an interesting mystery
that persists: how did the Omicron variant come to be? Unlike
the prior dominant variants, Omicron does not appear to be a
descendent of another dominant variant before it ( [6], [7]).
There are three major theories for how Omicron’s suddenly
appeared:

1) It mutated in a certain population, but was either not
tested for in that population, or maintained a low enough
percentage to avoid being noticed.

2) It developed in an immunocompromised person, where
the virus kept surviving for months or years, continuously
mutating as a poor immune system failed to fight it off
completely.

3) After developing in a non-human host, it was transmitted
to a human where it spread like any other variant.

Among these options, 1) appears the least likely. Avoiding
detection would be difficult since Omicron is over 50 mu-
tations from the original Wuhan strand of SARS-CoV-2 [8].
Based on research regarding how multiple variants in the same
location come to be and how viruses are expected to evolve
to best survive, we want to find evidence to help determine if
Omicron could have developed along with the same variants
that gave Delta.

If Omicron developed along with the other variants but
was able to remain hidden, then it would have to be possible
for multiple variants to exist in the same community. First,
it is necessary to determine whether or not contracting a
Delta variant protects against Omicron. Paper [10] suggests
that contacting Delta provides protection against Omicron
for a considerable period. It is still possible that the two
viruses were living together. This is similar to behavior in the
neutral network, where there might exist multiple equal fitness
versions of the virus where neither is going to kill off the other
via competitive exclusion (this point is further explored in Fig.
3). The way that COVID-19 tends to have one dominant strand
is supported mathematically by Wang [11]. However, another
paper that looks at the rate of viral production in the body and
the rate of infection shows that two viruses can coexist if the

Fig. 3. Data presented from [3]. These plots show the sites 370 to 379 in the
SARS-CoV-2 spike protein. Looking at each individual site and the affected
fitness, these are not individually neutral mutations, and would not be able
to be connected on a neutral network. However, the overall fitness change
(in orange) is similar. This supports that Omicron did not evolve from Delta,
but since they would not even connect on a neutral network it shows that it
is unlikely they developed together in the same population since these large
changes in fitness would have likely caused one to become dominant before
coming back to being neutral. One interesting fast is that the delta variant
did not change anything in this region, while Omicron had multiple neaby
mutations.

Fig. 4. Reproduced from [9]. A classical view of viruses where the danger
posed by a virus decreases when R0 decreases. This is not a closed question
for COVID-19 since it is not entirely clear what the relationship between the
number of virions produced and the physical impacts of the infection on the
infected individual is. This is one of many assumptions that were made before
COVID-19 that are not entirely accurate.



rate of infection is larger in one, and the rate of production
in the body is larger in the other [12], but that paper is older
than COVID and might not be as accurate due to the amount
we have learned since the COVID-19 pandemic. Omicron was
a very infectious disease that tended to not cause as strong of
symptoms, which might lead us to believe that it does not
produce as many virions in the body, but for COVID it is
shown that producing more virions does not necessarily make
infected more sick [9]. Overall the evidence here points to
Omicron not developing along with the Delta variants.

While the origins for Omicron were quite mysterious, it did
follow the expected progression that scientists imagined for
COVID: becoming more infectious and less dangerous. Kun
et. al. explore whether or not these are reasonable assumptions
to make about how COVID will evolve in the future [9].
While Omicron was less deadly than previous variants, that
was not necessarily because the virus was less dangerous. By
the time Omicron was a major force, much of the population
was vaccinated, many people changed behaviors to increase
their safety, and most people had contracted some variant of
COVID-19. Their paper concludes that many assumptions that
are used to predict virus behavior do not apply to COVID-19.

Here we present a short look at a single possibility to answer
the question: where did Omicron come from? Based on the
literature available, Omicron developing along with Delta (i.e.
in the same population) appears to be very unlikely. Given
that COVID has broken some of the historical assumptions
held pre-pandemic, it is hard to predict where the next variant
will come from and how it will act, even with the extensive
data we have on past variants. This shows that even reducing
the scope of a question to a small, well-documented piece of
the COVID puzzle it is still a difficult topic and warrants the
many researchers working to understand the force of nature
that is viral diseases.
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